STANLEY SIEGEL

oxygen atoms, in order.to determine if the addition
of the oxygen contributions was found to produce a
smooth curve. For the k0 reflections, an improvement
in the calculated intensities was indeed found. The
oxygen contributions were always of the correct sign,
although small. On the other hand, the z parameter
could only be given an approximate value. The ob-
served 007 intensities were always considerably greater
than the calculated values, indicating, possibly, the
existence of preferred orientation of the erystallites.
This may account for some of the uncertainty in
evaluating 2. However, the value z = 0-1 appears to be
compatible with observations. The addition of the
oxygen atoms with the coordinates given above
produces a general improvement in the calculated
intensities. The extent of the agreement is shown in
Table 1, where the calculated intensities I, include
the oxygen contributions. The calculated intensities
also contain heavy temperature and absorption cor-
rections. The observed intensities I, were taken from
microphotometer tracings. At the large angles, the
overlapping of the «; and &, maxima is generally so
extensive that serious errors are introduced in the
evaluation of the intensities and sin%0 values. As
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indicated in Table 1, a number of reflections could not
be resolved in intensity.

Thus, with the assumption that the oxygen positions
are assigned correctly, the space group becomes
P3-Cj;, with atoms in the following positions:

1U; in (0,0, 0);

2 Uy in (%’ % 21, (%’ %7 Z1), with z; = 0;

6 Or in (x: Y, 2)7 (:’27 g’ 2)7 (:17: r—y, z)’ (.7/: Yy—x, 5)1
(y—=, %, z), and (x—y, x,Z) with x = %, y = 0,
and z = 0-1;

20m in (3, 2), (b 4, %) with %, = &,

Each U; is bonded to 6 Oy with O1—6 Or = 231 A.
Each Up is bonded to 6 O; with Up—6 O = 2-31 A
and in addition to 2 Op with Up-2 On = 2:06 A.
The latter bonding produces endless Un—On-Un-
Or... chains along the ¢ direction.
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A Method for Calculating Thermal Vibration Amplitudes
from Spectroscopic Data

By P. W. Hiaes*
Department of Mathematical Physics, The University, Drummond Street, Edinburgh 8, Scotland

(Recetved 2 May 1955)

It is shown how (Zz)mt,, the contribution from internal molecular vibrations to the mean square
amplitude of thermal motion of an atom in a molecular crystal, may be calculated from the vibra-
tional spectrum of the molecule itself and that of a molecule which differs from it only by the

occurrence of a different isotope at position <.

In two previous papers (Higgs, 1953, 1955), which will
be referred to as I, IT respectively, the effect of thermal
motion on the electron distribution in molecular
crystals was discussed. The motion of an individual
atom 7 was characterized by its mean square amplitude
u?, a quantity identical apart from a numerical factor
with the temperature parameter B; commonly used
by X-ray crystallographers (see II, equation (28)). It
was stated in II that the calculation of (u})y., the
contribution to #? from internal vibrations of a mole-
cule, is hampered by the unreliability (so far) of purely

* This work was done while the author was at the Wheat-
stone Physics Laboratory, King’s College, Strand, London
W. C. 2, England.

theoretical data on molecular force fields. In view of
this fact it is perhaps worth while to point out that

(u2)ine. may be calculated from spectroscopic data. The
quantities involved in the formula which is to be
derived are the fundamental vibration frequencies of
the molecule itself and those of molecules differing
from it only by their isotopic composition. Thus the
necessary data consist of certain infra-red and Raman
spectra or of the vibrational structure of certain ultra-
violet spectra.

First, using the notation of 1I, we write down some
properties of normal coordinates. The vibrational
kinetic and potential energies of a molecule,

T=4y'Gly and V = }y'Fy,
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where y is a set of internal coordinates, are trans-
formed by the normal coordinate transformation

y =Ngq
into the simpler sum-of-squares forms
: T=1%q'q and V =14q'Aq,
in which
A = diag (4,)
= diag (4n%7) , (1)

where v, is a fundamental vibration frequency. Thus
the matrix N has the properties

N'GN =1,
NFN = 4, } @)
from which we obtain by induction
Nf(A)N' = f(GF)G, 3)

for any function f which can be defined by a power
series expansion. N,, the ath column of N, is an eigen-
vector- of GF belonging to the eigenvalue 4,, that is

GFN, = N, . 4)

We next consider the effect on the vibration fre-
quencies of a small change in the matrix G only, i.e.
of a small change in the atomic masses and perhaps
also in the equilibrium configuration, the force field
F remaining constant.*

Equation (4) becomes

(G+AG)F(N,+4N,) = (A,+44,) (N, +4AN,) .

The zeroth order term of this equation is already
satisfied, by (4); the first order term is

(AG)FN,+GF(AN,) = (42,)N,+A,(AN,) .

.Premultiplying by N.G~! and using equations (2) and
(4), we obtain

A4 jA, = N.G{(AG)G-IN, . (5)

Now G is defined by the equation (see also II, equa-
tion (6))
G = bM-b’,

where M is the diagonal matrix of the atomic masses
(each m; occurs three times, corresponding to the three
Cartesian components of the displacement u;) and b
is the transformation matrix defining the internal
coordinates y in terms of the Cartesian coordinates x.
So if we change only the masses, leaving the equili-
brium configuration (characterized by b) unaltered,
the change in G is given by

AG = —bMY{(AM)M-1b'.

* Changes of this type have been treated by perturbation
methods by Bernstein (1951) and others.

A METHOD FOR CALCULATING THERMAL VIBRATION AMPLITUDES

Substituting this expression into (5), we get finally
—A4,/A, = N.G'IbM-1(AM)M-1b'G-IN, . (6)

We now employ equation (6) to evaluate an ex-
pression of the form

-2 f(A). 444, ,

where f(4) is a general power series and the summation
is over all normal modes «. Using successively the
relation

trace AB = trace BA

and equation (3), we obtain from (6)
- Zf(lu) 'A}'a/la

= trace {f(A)N'G'bM-(AM)M-1b'G-IN}
= trace {M~1b’G-INf(A)N'G-1bM~-}(4M)}
— trace {M-1b'G-1f(GF)bM-1(AM)} . ()

If AM consists merely of a change Am; in the mass of
the 7th atom and the function f is particularized by
the definition

f(A) = 3hA~% coth (hA}|2kT) , (8)
then the right-hand side of (7) is seen by comparison

with equation (25) of II to be just (u2)in;.Am;. Thus
we obtain finally, by substituting into (7) the defini-
tions (1) and (8),

(Ud)ins. = (hj47?) X (—3v,[om)v;® coth (v, 2kT) . (9)

Inspection of equation (9) shows that the quantities
which we require, ideally, in order to determine

(%3)ins. are the complete vibrational spectrum of the
molecule (v,) together with the change induced in this
spectrum by an infinitesimal change in the mass of
atom ¢ (0v,/0om;). The nearest practical possibility to
the latter is the change induced by substituting for
atom ¢ its neighbouring isotope: using the ratios
Ay, jAm; in (9) will lead to a reasonably accurate
estimate of (%), provided that Amg/m,; is small.
Obviously it is absurd to apply this method to a very
light atom such as hydrogen, where Am;/m;~ 1; but
when we reach carbon, the thermal motion of which
is of considerable interest, then already Am;/m; < 0-1
for the isotopes C'? and C!3. Thus the method seems
to be quite promising as a way of determining thermal
amplitudes for a large class of organic molecules.
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